Hybrid approaches to quantum information science
Challenge of simultaneous isolation and control of many-body system
Challenge of simultaneous isolation and control of many-body system

• Photons: leading candidates for long-distance communication
Challenge of simultaneous isolation and control of many-body system

• Photons: leading candidates for long-distance communication

But: do not interact, hard to store
Challenge of simultaneous isolation and control of many-body system

- Photons: leading candidates for long-distance communication

 But: do not interact, hard to store

- Spins, especially nuclear spins: unique isolation, control with NMR
Challenge of simultaneous isolation and control of many-body system

- **Photons**: leading candidates for long-distance communication

 But: do not interact, hard to store

- **Spins, especially nuclear spins**: unique isolation, control with NMR

 But: do not interact, hard to isolate, measure
Challenge of simultaneous isolation and control of many-body system

- Photons: leading candidates for long-distance communication
 But: do not interact, hard to store

- Spins, especially nuclear spins: unique isolation, control with NMR
 But: do not interact, hard to isolate, measure

- Isolated ions and atoms: excellent isolation, control techniques
Challenge of simultaneous isolation and control of many-body system

• Photons: leading candidates for long-distance communication
 But: do not interact, hard to store

• Spins, especially nuclear spins: unique isolation, control with NMR
 But: do not interact, hard to isolate, measure

• Isolated ions and atoms: excellent isolation, control techniques
 But: interact weakly, hard to integrate
Challenge of simultaneous isolation and control of many-body system

• Photons: leading candidates for long-distance communication
 But: do not interact, hard to store

• Spins, especially nuclear spins: unique isolation, control with NMR
 But: do not interact, hard to isolate, measure

• Isolated ions and atoms: excellent isolation, control techniques
 But: interact weakly, hard to integrate

• Charged solid-state systems: stability, integration, strong interactions
Challenge of simultaneous isolation and control of many-body system

- Photons: leading candidates for long-distance communication

 But: do not interact, hard to store

- Spins, especially nuclear spins: unique isolation, control with NMR

 But: do not interact, hard to isolate, measure

- Isolated ions and atoms: excellent isolation, control techniques

 But: interact weakly, hard to integrate

- Charged solid-state systems: stability, integration, strong interactions

 But: live in complex solid-state environment, hard to control
Hybrid approaches to quantum information

aim: address key challenges in QIS

• Hybrid tools to explore new qubits
• Hybrid architectures: combining useful features of different systems
• Outlook: new applications of hybrid systems
• Outlook: integrating hybrid experimental technologies
Hybrid tools for exploring new qubits
Hybrid tools for exploring new qubits

one example
Example: control of single electron & nuclear spins using Nitrogen-Vacancy impurities in diamond
Example: control of single electron & nuclear spins using Nitrogen-Vacancy impurities in diamond

✔ Enabled by:
 • Single molecule optical spectroscopy
Example: control of single electron & nuclear spins using Nitrogen-Vacancy impurities in diamond

✓ Enabled by:

- Single molecule optical spectroscopy
- Quantum control techniques from quantum optics, ESR & NMR
Example: control of single electron & nuclear spins using Nitrogen-Vacancy impurities in diamond

✓ Enabled by:
 • Single molecule optical spectroscopy
 • Quantum control techniques from quantum optics, ESR & NMR
 • Understanding physics of mesoscopic (spin) environment
Example: control of single electron & nuclear spins using Nitrogen-Vacancy impurities in diamond

✓ Enabled by:

• Single molecule optical spectroscopy
• Quantum control techniques from quantum optics, ESR & NMR
• Understanding physics of mesoscopic (spin) environment
• Advances in material science
Control of single electron spin

Use light to isolated, polarize, readout electron spin state at room T
Control of single electron spin

Use light to isolated, polarize, readout electron spin state at room T

Friday, April 24, 2009
Control of single electron spin

Use light to isolated, polarize, readout electron spin state at room T

- Pioneering work
 F.Jelezko, J.Wrachtrup (Stuttgart)
 D.Awschlom (UCSB)

- Near single shot readout at low T
Control of single electron spin

Use light to isolate, polarize, and readout electron spin state at room T

- Pioneering work
 F. Jelezko, J. Wrachtrup (Stuttgart)
 D. Awschalom (UCSB)

- Near single shot readout at low T

- Electron precession decay time (average over many runs): \(T_2^* \approx 1 \mu s \)
- Electron decoherence time (spin echo): \(T_2 \approx 1 \text{ ms} \)

Friday, April 24, 2009
Ion implantation: isotopic engineering of single spins

Spatially resolved photoluminescence map

1 mm

Anti-bunching indicates single spin

Hyperfine splitting 15NV

Single spin resonance

(G.F. Fuchs et al., 2009)
Picture of single electron environment

- Obtained through detailed spectroscopy of individual NV centers
Picture of single electron environment

- Obtained through detailed spectroscopy of individual NV centers
Picture of single electron environment

- Obtained through detailed spectroscopy of individual NV centers
Picture of single electron environment

- Obtained through detailed spectroscopy of individual NV centers

13C nuclei decoherence
Picture of single electron environment

- Obtained through detailed spectroscopy of individual NV centers

13C nuclei
decoherence
Proximal nuclei are different:
strong hyperfine, can be isolated

R. Hanson et al, Science (2008)
Picture of single electron environment

• Obtained through detailed spectroscopy of individual NV centers

13C nuclei

decoherence

Proximal nuclei are different:
strong hyperfine, can be isolated

R. Hanson et al, Science (2008)

• Current efforts:
 reducing 13C concentration
 controlling & using proximal nuclear spins:
 realization of few qubit registers

Friday, April 24, 2009
Improving coherence via materials engineering

✓ New development: ultra-pure CVD grown diamond enriched 12C isotope
Improving coherence via materials engineering

✓ New development: ultra-pure CVD grown diamond enriched 12C isotope

✓ First results: ultra-long coherence in Ramsey measurements

$T_2^*> 100$ microseconds, exceptional coherence!

Controlling nuclear spins in electron environment: recent work
Controlling nuclear spins in electron environment: recent work

✓ Magnetic detection, control of individual 13C nuclei in electron environment

• Polarization (sub μK cooling), control, readout of single nuclei
• Long lived (~1s) quantum memory in single nuclei at room T
• Controlled few-spin systems, entanglement of 3 spins

Controlling nuclear spins in electron environment: recent work

✓ Magnetic detection, control of individual 13C nuclei in electron environment

- Polarization (sub µK cooling), control, readout of single nuclei
- Long lived (~1s) quantum memory in single nuclei at room T
- Controlled few-spin systems, entanglement of 3 spins

Application: repetitive readout of electronic spin using proximal nuclear spins

✓ Idea: map electronic spin to nearby nuclear spin(s), repetitively measure nuclear spin
Application: repetitive readout of electronic spin using proximal nuclear spins

✓ Idea: map electronic spin to nearby nuclear spin(s), repetitively measure nuclear spin
Application: repetitive readout of electronic spin using proximal nuclear spins

✓ Idea: map electronic spin to nearby nuclear spin(s), repetitively measure nuclear spin

$|\Psi\rangle \rightarrow |0\rangle \rightarrow |0\rangle \rightarrow |0\rangle \rightarrow \ldots$
Application: repetitive readout of electronic spin using proximal nuclear spins

✓ Idea: map electronic spin to nearby nuclear spin(s), repetitively measure nuclear spin

![Diagram showing the mapping of electronic spin (e-spin) to nearby nuclear spin (n-spin)]
Application: repetitive readout of electronic spin using proximal nuclear spins

✓ Idea: map electronic spin to nearby nuclear spin(s), repetitively measure nuclear spin

\[e \]

\[n \]

\[|\Psi\rangle \]

\[|0\rangle \]

\[1 \]

\[2 \]

\[\ldots \]
Application: repetitive readout of electronic spin using proximal nuclear spins

✓ Idea: map electronic spin to nearby nuclear spin(s), repetitively measure nuclear spin

![Diagram of electronic and nuclear spins]
Application: repetitive readout of electronic spin using proximal nuclear spins

 ✓ Idea: map electronic spin to nearby nuclear spin(s), repetitively measure nuclear spin
Application: repetitive readout of electronic spin using proximal nuclear spins

✓ Idea: map electronic spin to nearby nuclear spin(s), repetitively measure nuclear spin

\[|\Psi\rangle \]

\[|0\rangle \]

\[n\text{-spin} \]

\[e\text{-spin} \]
Application: repetitive readout of electronic spin using proximal nuclear spins

✓ Idea: map electronic spin to nearby nuclear spin(s), repetitively measure nuclear spin

Pulse sequence

Friday, April 24, 2009
Application: repetitive readout of electronic spin using proximal nuclear spins

✓ Idea: map electronic spin to nearby nuclear spin(s), repetitively measure nuclear spin

Pulse sequence

RF
MW2
MW1
Laser
Detector

Operation: Initialize U(t) Map 1 2 ··· Repetitive Readout [RR x60] ··· 60

State:

\[|0\rangle_e \otimes |\downarrow\rangle_n = \left(a |0\rangle_e + b |1\rangle_e\right) \otimes |\downarrow\rangle_n \]

\[a |0\rangle_e |\downarrow\rangle_n + b |1\rangle_e |\uparrow\rangle_n \]

\[|0\rangle_e \otimes (|a|^2 |\downarrow\rangle \langle \downarrow| + |b|^2 |\uparrow\rangle \langle \uparrow|) \]
Improved readout of electron Rabi oscillations
Improved readout of electron Rabi oscillations

✓ Result: 10-fold improvement in contrast
 > 2-fold improvement in signal to noise of readout

L. Jiang, J. Hodges et al, (2009), similar to Al ion clock Wineland group
Improved readout of electron Rabi oscillations

✓ Result: 10-fold improvement in contrast
> 2-fold improvement in signal to noise of readout

✓ Further improvement using 2 nuclear ancillae & concatenated sequence

L. Jiang, J. Hodges et al, (2009), similar to Al ion clock Wineland group
Improved readout of electron Rabi oscillations

- Result: 10-fold improvement in contrast
- > 2-fold improvement in signal to noise of readout
- Further improvement using 2 nuclear ancillae & concatenated sequence

Example of useful few-qubit algorithm

L. Jiang, J. Hodges et al, (2009), similar to Al ion clock Wineland group

Friday, April 24, 2009
Search for a “perfect” hybrid qubit

✓ Remarkable efforts from experiments & material science to theory

✓ Open questions:

Nitrogen-vacancy color centers in diamond is one of 500+ impurities in diamond:
 what about others?
other modern material systems: nanotubes etc?
other useful “hybrids”, e.g. topological qubits?
Hybrid architectures:
combining useful features of different qubits
Hybrid quantum architectures
Hybrid quantum architectures

✓ Pioneering example: quantum optical interface

Non-local coupling of quantum bits by absorbing or emitting a photon in a controlled way

Cirac, Zoller, Mabuchi, Kimble, PRL 78, 3221 (1997)

experiments at Caltech, MPQ
Hybrid quantum architectures

✓ Pioneering example: quantum optical interface
 Non-local coupling of quantum bits by absorbing or emitting a photon in a controlled way

 Cirac, Zoller, Mabuchi, Kimble, PRL 78, 3221 (1997)
 experiments at Caltech, MPQ

✓ Broad effort in AMO community:
 single neutral atoms, ions, atomic ensembles, solid-state emitters
 new approaches to q.networks: probabilistic, cluster state techniques etc
Hybrid quantum architectures

✓ Pioneering example: quantum optical interface
 Non-local coupling of quantum bits by absorbing or emitting a photon in a controlled way

 Cirac, Zoller, Mabuchi, Kimble, PRL 78, 3221 (1997)
 experiments at Caltech, MPQ

✓ Broad effort in AMO community:
 single neutral atoms, ions, atomic ensembles, solid-state emitters
 new approaches to q.networks: probabilistic, cluster state techniques etc

✓ Remarkable new interconnects:
 in optical, microwave, mechanical domains
Quantum interfaces based on photonic crystal cavities

$|E|^2$

$Q = \tau \omega$

$\tau =$ decay time

$V =$ mode

volume
Quantum interfaces based on photonic crystal cavities

\[|E|^2 \]

\[Q = \tau \omega \]
\[\tau = \text{decay time} \]

\[V = \text{mode volume} \]
Quantum interfaces based on photonic crystal cavities

Photonic crystals can localize light into extremely small volumes $V \sim (\lambda/n)^3$ with quality factors $Q \sim 10^6$; large Q/V ⇒ cavity QED in strong coupling regime in Si, Ga-based PCCs
Quantum interfaces based on PCs: recent advances

- Strong coupling, single photon nonlinear optics with semiconductor QDs with GaAs photonic crystal cavities

J.Vuckovic (Stanford), A.Imamoglu (ETH), J.Finley (Munich)
Quantum interfaces based on PCs: recent advances

• Strong coupling, single photon nonlinear optics with semiconductor QDs with GaAs photonic crystal cavities
 J.Vuckovic (Stanford), A.Imamoglu (ETH), J.Finley (Munich)

• Challenge: extend these techniques to other qubits with better coherence properties, other materials, hybrid qubit/cavity systems, e.g. diamond+GaP cavities
Extension to nanoscale using plasmonic systems

✓ Sub-wavelength localization and guiding electromagnetic field on conducting wires results in strong coupling of single atoms to plasmon field
Extension to nanoscale using plasmonic systems

✓ Sub-wavelength localization and guiding electromagnetic field on conducting wires results in strong coupling of single atoms to plasmon field

✓ Example: proximal atom emission guided almost completely into the wire accompanied by large enhancement
Extension to nanoscale using plasmonic systems

✓ Sub-wavelength localization and guiding electromagnetic field on conducting wires results in strong coupling of single atoms to plasmon field

✓ Example: proximal atom emission guided almost completely into the wire accompanied by large enhancement
Extension to nanoscale using plasmonic systems

- Sub-wavelength localization and guiding electromagnetic field on conducting wires results in strong coupling of single atoms to plasmon field

- Example: proximal atom emission guided almost completely into the wire accompanied by large enhancement

- Realization: atoms = single CdSe q.dots, NVs in nanocrystals efficiently coupled to silver nanowires (~100 nm)

Extension to nanoscale using plasmonic systems

✓ Sub-wavelength localization and guiding electromagnetic field on conducting wires results in strong coupling of single atoms to plasmon field

✓ Example: proximal atom emission guided almost completely into the wire accompanied by large enhancement

✓ Realization: atoms = single CdSe q.dots, NVs in nanocrystals efficiently coupled to silver nanowires (~100 nm)

✓ Current efforts:
 hybrid optoplasmonic systems to avoid losses
 e.g. K.Vahala group, Nature (2009)
 on-chip detection, nano-scale “dark” optical circuits
 A.Folk, F. Koppens et al, Nature Physics, in press
 application to single photon collection, switches, transistors
Nano-mechanical quantum spin transducers

Quantum nanomechanics
M. Aspelmeyer, D. Bouwmeester, J. Harris, T. Kippenberg, K. Schwab
Nano-mechanical quantum spin transducers

Quantum nanomechanics
M. Aspelmeyer, D. Bouwmeester, J.Harris, T. Kippenberg, K.Schwab
Nano-mechanical quantum spin transducers

Quantum nanomechanics
M. Aspelmeyer, D. Bouwmeester, J.Harris, T. Kippenberg, K.Schwab

displacement

magnetic dipole
Coupling of single spin to mechanical motion in magnetized tip

- Zeeman shift due to one quantum of motion @ h=30 nm distance ~ 100 KHz exceed spin T_2, motional decoherence of nanomechanical system
Nano-mechanical quantum spin transducers

✓ Coupling of single spin to mechanical motion in magnetized tip
 • Zeeman shift due to one quantum of motion @ h=30 nm distance ~ 100 KHz exceed spin T_2, motional decoherence of nanomechanical system

$$H_S = H_{NV} + \hbar \omega_r a^\dagger a + \hbar \lambda (a + a^\dagger) S_z$$

✓ “Cavity QED” with mechanical motion
✓ New possibilities:
 cooling, quanta by quanta engineering “arbitrary” motional states, mapping spin into motion, amplifying spin signals using charged tips…

Quantum nanomechanics
M. Aspelmeyer, D. Bouwmeester, J.Harris, T. Kippenberg, K.Schwab
Remote spin coupling via NEMS data bus

✓ Mapping spin to mechanical motion of magnetic, charged tip can be used to “amplify” spin signals

P. Rabl et al., collaboration with J. Harris, P. Zoller’s groups
Remote spin coupling via NEMS data bus

✓ Mapping spin to mechanical motion of magnetic, charged tip can be used to “amplify” spin signals

P. Rabl et al, collaboration with J. Harris, P. Zoller’s groups
Remote spin coupling via NEMS data bus

Mapping spin to mechanical motion of magnetic, charged tip can be used to “amplify” spin signals

100kHz coupling strength over 10s of µm distances

P.Rabl et al, collaboration with J.Harris, P.Zoller’s groups
Remote spin coupling via NEMS data bus

✓ Applications: remote coupling between spins, coupling to ions, other charged qubits
Remote spin coupling via NEMS data bus

✓ Applications: remote coupling between spins, coupling to ions, other charged qubits
Remote spin coupling via NEMS data bus

✓ Applications: remote coupling between spins, coupling to ions, other charged qubits

Search for “ideal” quantum bus is not over!

P.Rabl et al, collaboration with J.Harris, P.Zoller’s group
Outlook: potential applications of hybrid systems
Quantum communication: long-distance challenge

- High quality entanglement and QKD over >1000 km channels
Quantum communication: long-distance challenge

✓ High quality entanglement and QKD over >1000 km channels

Alice

Bob

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

✓ The idea of quantum repeater:
 • intermediate nodes
Quantum communication: long-distance challenge

✓ High quality entanglement and QKD over >1000 km channels

✓ The idea of quantum repeater:
 • intermediate nodes
 • entangle nearby nodes in parallel, use memory to store entanglement
Quantum communication: long-distance challenge

✓ High quality entanglement and QKD over >1000 km channels

The idea of quantum repeater:
• intermediate nodes
• entangle nearby nodes in parallel, use memory to store entanglement
• purify entanglement, connect nodes by Bell measurement.
Quantum communication: long-distance challenge

✓ High quality entanglement and QKD over >1000 km channels

![Diagram showing entanglement process between Alice and Bob through intermediate nodes.]

✓ The idea of quantum repeater:
 • intermediate nodes
 • entangle nearby nodes in parallel, use memory to store entanglement
 • purify entanglement, connect nodes by Bell measurement.
Quantum communication: long-distance challenge

- High quality entanglement and QKD over >1000 km channels

- The idea of quantum repeater:
 - intermediate nodes
 - entangle nearby nodes in parallel, use memory to store entanglement
 - purify entanglement, connect nodes by Bell measurement.
Quantum communication: long-distance challenge

- High quality entanglement and QKD over >1000 km channels

The idea of quantum repeater:
- intermediate nodes
- entangle nearby nodes in parallel, use memory to store entanglement
- purify entanglement, connect nodes by Bell measurement.

Briegel et al. PRL 81, 5932 (1998)
Quantum communication: long-distance challenge

✓ High quality entanglement and QKD over >1000 km channels

Alice

Bob

✓ The idea of quantum repeater:
 • intermediate nodes
 • entangle nearby nodes in parallel, use memory to store entanglement
 • purify entanglement, connect nodes by Bell measurement.

✓ Challenges:
 • Efficient light-matter interface, few-qubit memory, logic has been demonstrated: need to combine them all, interface with telecom
 • Current protocols: polynomial scaling but slow (one bit/second level), need new approaches for efficient use of resources, time

Briegel et al. PRL 81, 5932 (1998)
Quantum communication: long-distance challenge

✓ High quality entanglement and QKD over >1000 km channels

✓ The idea of quantum repeater:
 • intermediate nodes
 • entangle nearby nodes in parallel, use memory to store entanglement
 • purify entanglement, connect nodes by Bell measurement.

✓ Challenges:
 • Efficient light-matter interface, few-qubit memory, logic has been demonstrated: need to combine them all, interface with telecom
 • Current protocols: polynomial scaling but slow (one bit/second level), need new approaches for efficient use of resources, time

Need new, more efficient protocols & architectures
Metrology & sensing

✓ Quantum coherence, logic, entanglement for metrology
Metrology & sensing

✓ Quantum coherence, logic, entanglement for metrology

• Better clocks: one of the early motivation to study entanglement in AMO systems
Metrology & sensing

✓ Quantum coherence, logic, entanglement for metrology

• Better clocks: one of the early motivation to study entanglement in AMO systems

• New avenues:
 use solid-state systems
 extend to new domains, e.g. nanometer-scale sensing
Example: application to nanoscale magnetic sensing

✓ A new sensor that makes use of single NV spin close to diamond surface to detect magnetic fields via Zeeman effect

J. Maze et al, Nature (2008),
Example: application to nanoscale magnetic sensing

A new sensor that makes use of single NV spin close to diamond surface to detect magnetic fields via Zeeman effect

J. Maze et al, Nature (2008),

Magnetometer with unique combination of sensitivity and spatial resolution:
potential applications in micro MRI, biophysics, neuroscience, material science
Example: application to nanoscale magnetic sensing

✓ A new sensor that makes use of single NV spin close to diamond surface to detect magnetic fields via Zeeman effect

J. Maze et al, Nature (2008),

✓ Magnetometer with unique combination of sensitivity and spatial resolution: potential applications in micro MRI, biophysics, neuroscience, material science

• Current efforts:
development of AFM-based scanning sensors far-field nonlinear optical spin imaging at nanoscales use few spin entangled states for sensing
Outlook: hybrid experimental technologies

• Would be ideal to combine isolated atoms, ions, molecules with solid-state systems
Outlook: hybrid experimental technologies

- Would be ideal to combine isolated atoms, ions, molecules with solid-state systems

- Examples:
Outlook: hybrid experimental technologies

- Would be ideal to combine isolated atoms, ions, molecules with solid-state systems

- Examples:

 Memory, optical interface for superconducting qubits: molecules, spins
Outlook: hybrid experimental technologies

- Would be ideal to combine isolated atoms, ions, molecules with solid-state systems

- Examples:

 Memory, optical interface for superconducting qubits: molecules, spins

 Magnetic coupling to single atom spin
Outlook: hybrid experimental technologies

- Would be ideal to combine isolated atoms, ions, molecules with solid-state systems

- Examples:

 Memory, optical interface for superconducting qubits: molecules, spins
 Magnetic coupling to single atom spin
 Optical coupling to nano-photonic cavities and waveguides
Outlook: hybrid experimental technologies

- Would be ideal to combine isolated atoms, ions, molecules with solid-state systems

- Examples:

 Memory, optical interface for superconducting qubits: molecules, spins

 Magnetic coupling to single atom spin

 Optical coupling to nano-photonic cavities and waveguides

All require atom trapping within 100 nm of solid-state surface

Challenges: noise, patch potentials, van der Wal interaction ...
Toward nanoscale interface for isolated atoms
Toward nanoscale interface for isolated atoms

✓ Micro- and nanophotonic systems for trapping of isolated atoms
Toward nanoscale interface for isolated atoms

✓ Micro- and nanophotonic systems for trapping of isolated atoms

• Current experiments with atoms - micron localization:
 e.g. atoms near pulled fiber (Tokyo, Maintz),
 inside hollow core fiber (Harvard-MIT CUA)

M.Bajcsy et al, PRL (2009)
Toward nanoscale interface for isolated atoms

✓ Micro- and nanophotonic systems for trapping of isolated atoms

• Current experiments with atoms - micron localization:
 e.g. atoms near pulled fiber (Tokyo, Maintz),
 inside hollow core fiber (Harvard-MIT CUA)

✓ New avenue: dipole traps using nanoscale plasmons

M. Bajcsy et al, PRL (2009)
Toward nanoscale interface for isolated atoms

✓ Micro- and nanophotonic systems for trapping of isolated atoms

- Current experiments with atoms - micron localization:
 e.g. atoms near pulled fiber (Tokyo, Maintz),
 inside hollow core fiber (Harvard-MIT CUA)

✓ New avenue: dipole traps using nanoscale plasmons

- Tight atom confinement, large energy scales, trapping frequencies > 10 MHz
- Strong blue “shield” for nanotip => can trap 50 nm from surfaces

D.Chang et al., collaboration with Peter Zoller, Vladan Vuletic, Hongkun Park
Also: plasmon tweezer work @ ICFO (Barcelona), atoms around nanotubes ideas (Hau)
Toward nanoscale interface for isolated atoms

Micro- and nanophotonic systems for trapping of isolated atoms

- Current experiments with atoms - micron localization:
 e.g. atoms near pulled fiber (Tokyo, Maintz),
 inside hollow core fiber (Harvard-MIT CUA)

New avenue: dipole traps using nanoscale plasmons

- Tight atom confinement, large energy scales, trapping frequencies > 10 MHz
- Strong blue "shield" for nanotip => can trap 50 nm from surfaces

D.Chang et al., collaboration with Peter Zoller, Vladan Vuletic, Hongkun Park

Also: plasmon tweezer work @ ICFO (Barcelona), atoms around nanotubes ideas (Hau)

M.Bajcsy et al, PRL (2009)

Such techniques will be critical for combining isolated atoms, molecules with solid-state quantum systems
New field of low-energy quantum science
New field of low-energy quantum science

• Remarkable developments involving interfaces of atomic physics & quantum optics
 condensed matter physics
 nanoscience, chemistry
 photonic & electrical device engineering
 quantum information science…
New field of low-energy quantum science

- Remarkable developments involving interfaces of atomic physics & quantum optics, condensed matter physics, nanoscience, chemistry, photonic & electrical device engineering, quantum information science...

- New research community: common themes
 controlled manipulation of quantum mechanical phenomena
 search for new quantum states of matter
 potential applications of controlled quantum phenomena
New field of low-energy quantum science

• Remarkable developments involving interfaces of atomic physics & quantum optics condensed matter physics nanoscience, chemistry photonic & electrical device engineering quantum information science…

• New research community: common themes controlled manipulation of quantum mechanical phenomena search for new quantum states of matter potential applications of controlled quantum phenomena

• Unique inter-disciplinary interface theory, experiment, technology & application closely connected
New field of low-energy quantum science

- Remarkable developments involving interfaces of atomic physics & quantum optics, condensed matter physics, nanoscience, chemistry, photonic & electrical device engineering, quantum information science...

- New research community: common themes controlled manipulation of quantum mechanical phenomena, search for new quantum states of matter, potential applications of controlled quantum phenomena

- Unique inter-disciplinary interface theory, experiment, technology & application closely connected

This is exciting, rapidly progressing research field
New field of low-energy quantum science

- Remarkable developments involving interfaces of atomic physics & quantum optics, condensed matter physics, nanoscience, chemistry, photonic & electrical device engineering, quantum information science...

- New research community: common themes
 - controlled manipulation of quantum mechanical phenomena
 - search for new quantum states of matter
 - potential applications of controlled quantum phenomena

- Unique inter-disciplinary interface
 - theory, experiment, technology & application closely connected

This is exciting, rapidly progressing research field

These are long-term, “high risk” projects: stable funding is critical!