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Quantum computation

Sometimes,
we can design
a computation
so that the
interference
patterns reveal
structure of a
problem we 
want to solve

If you can maintain your computer in a very quiet environment,
its state evolves under wave mechanics



Example: hidden rotational symmetry

In: unif. superposition on H-periodic 
coloring of the group G=/N 
(for N ~ exp(n)). Here N=24, H=3.

“Fourier
sampling”

Out: unif.-norms superposition on 
the subgroup of Ĝ perp. to the period 
(here /8). Sample, repeat, 
post-process to get H.



Design goal in quantum algorithms: 
create huge constructive interference



What kind of problems allow such 
constructive interference?

Need to
create
resonance

Bennett, Bernstein, Brassard, 
Vazirani ’94: Quantum search
among 2n items requires
time ¸ 2

n/2.

I.e. (relative to an oracle),
no subexponential-time
algorithm for NP.

Quantum computers, like 
classical ones, can quickly 
solve only structured problems.



Exponential speedup quantum 
algorithms

Bernstein Vazirani ‘93: Fourier sampling

Simon ‘94; Shor ‘94: Abelian HSP
discrete log,
factoring; cracks
RSA cryptosystem

ABELIAN HIDDEN SUBGROUP PROBLEM
(+ closely related)

superpolynomial
speedup;
not an HSP

Boneh Lipton ‘95: Abelian HSP
further abelian gps; 
cracks elliptic curve 
cryptosystem

Kitaev ‘95: Abelian Stabilizer



cont. example: hidden rotational 
symmetry

For binary functions, Simon/Shor insufficient; 
use also Hales Hallgren ’00.

“Fourier
sampling”



Exponential speedup quantum 
algorithms

Bernstein Vazirani ‘93: Fourier sampling

Simon ‘94; Shor ‘94: Abelian HSP

Brassard Høyer ’97, Mosca, Ekert ‘99

van Dam Hallgren Ip ‘02: shifted quad. char.

Hallgren ‘02: fin. gen. gps: Pell’s eqn

Boneh Lipton ‘95: Abelian HSP

discrete log,
factoring; cracks
RSA cryptosystem

ABELIAN HIDDEN SUBGROUP PROBLEM
(+ closely related)

superpolynomial
speedup;
not an HSP

further abelian gps; 
cracks elliptic curve 
cryptosystem

Kitaev ‘95: Abelian Stabilizer



What about reflection symmetry? 
Dihedral group: nonabelian

Instead of the dual group Ĝ, now use the nonabelian Fourier transform
(decomposition of the group algebra into irreducible subspaces).
Ettinger Høyer ‘00: polynomially-many samples suffice. But no algorithm.

“Fourier
sampling”



Exponential speedup quantum 
algorithms: beyond abelian HSP

Grigni Schulman Vazirani Vazirani ’01: almost-abelian gps; Gavinsky ‘04
Watrous ’01: order of a solvable gp

Friedl Ivanyos Magniez Santha Sen ’03: hidden shift in (Z/p)n, const. p

Hallgren Russell Ta-Shma ’00: normal subgps

NONABELIAN HIDDEN SUBGROUP PROBLEM
(+ closely related)

Moore Rockmore Russell Schulman ’04: affine gps. Strong sampling
Kuperberg ’03: dihedral group

Rötteler Beth ’98: wreath products (/2)n ª (/2)

Alagic Moore Russell ’07: Kuperberg sieve in Gn (certain small G)
Bacon Childs van Dam ’05: PGM for Heisenberg gp... uses Gröbner

Ivanyos Sanselme Santha ’07: extraspecial p-groups (incl. Heisenberg)



Applications of the nonabelian HSP 
and related problems

1. Symmetric group:
Graph Automorphism ·Cl

 
Symmetric Group HSP

2. Symmetric Group HSP ·Cl
 
Code Equivalence (McEliece ‘78, 

Petrank Roth ’97)
3. Dihedral group: Regev ‘02: 

n1.5-uSVP ·Qu
 
Dihedral HSP (single-register coset sampling)          

·Qu
 
Avg-case Subset Sum

Regev ’04: for some constant c,
nc-uSVP ·Cl

 
Dihedral HSP (same sampling)

uSVP is an important problem: Ajtai ‘96, Ajtai Dwork ‘96, 
Regev ‘04: public-key cryptosystem based on worst-case 
hardness of n1.5-uSVP. Note, n0.5-uSVP is NP-hard.



nonabelian HSP

Limits to quantum algorithms 
for the HSP in Sn

Hallgren Russell Ta-Shma ’00: weak sampling fails
Grigni Schulman Vazirani Vazirani ’01: random bases fail
Moore Russell Schulman ’05: single-register algs fail

Hallgren Moore Roetteler Russell Sen ’06: 
o(log n)-registers algs fail

Moore Russell Sniady ‘07: Kuperberg’s sieve fails



Obstacle to Kuperberg sieve for Sn : new 
representation theory inequality

Key is following inequality (Rattan Sniady ’06): 8 D>0 9 constant c such 
such that:

Let λ be an irrep of Sn
 
whose Young Tableau has at most Dn1/2

 rows and 
and columns. Let t(π) be the number of transpositions required to 
to generate permutation π.

Then

|χλ
 
(π)/dλ

 
| · ((c max{1,t(π)2/n})/n1/2)t(π).

(Here dλ
 
is the dimension, and χλ

 
is the character, of irrep λ).

In Moore Russell Sniady ‘07 this ensures an upper bound on the variation 
variation distance between the statistics of the output of the algorithm 
algorithm when the hidden subgroup is trivial, and when it is nontrivial. 
nontrivial.



Other exponential speedup quantum 
algorithms

Childs Cleve Deotto Farhi
Gutmann Spielman ’03: 
“quantum walk”
(but the most compelling walk alg is for 
polynomial improvement, Farhi Goldstone
Gutmann ’07, Ambainis Childs Reichardt
Spalek Zhang ‘07)

Kedlaya ’06: count pts on a
genus g curve over GF(q) in
time poly(g, log q)

Childs Schulman Vazirani ’07:
nonlinear “hidden structure”
problems (level sets of
polynomials, sphere radius) 
in abelian groups

Freedman Kitaev Wang ‘02
Aharonov Jones Landau ’06:
additively approximate 
Jones polynomial at roots of 1.

Aharonov Arad Eban Landau ‘07: 
additively approximate
Tutte poly of planar graph



“Optically” driven algorithm design: 
find the centers of (a flat of) spheres

The plane here
represents the finite 
geometry  (GF/q)d.
Start w. wave on
the “external”
(meaningless for 
GF(q))
sphere

Can show:
Prob. of landing
at center is at least
1/polylog(q)

We find
exponential
speedup 
quantum
algorithms
in group
algebras, not
just any 
Hilbert space



Some potential targets

New algorithms for HSP in Sn. How to use highly entangled 
measurements?

“Post-quantum crypto:” try to rely on problems we really think 
aren’t in BQP, e.g., HSP in Sn. New key exchange protocol 
to replace Diffie Hellman?

Improve dihedral alg; crack cryptosystems based on SVP.
Improve Gröbner basis, ideal membership computation. (Note: 

ideal membership is EXPSPACE-complete: Mayr Meyer ‘82)
{linear algebra, univariate gcd} · Gröbner · Knuth-Bendix

Many physical quantum systems are only “slightly quantum”: 
e.g., low-entanglement 1D or 2D systems. (Motivates MPS, 
PEPS methods.) Simulate such quantum systems with 
quantum resources proportional only to this measure.



Further reading

Childs, van Dam ‘08: 
Quantum algorithms 
for algebraic problems
arXiv:0812.0380 



Image credits

South Island, New Zealand: Brewbooks 2006 (Flickr; Creative Commons 
license)

Great Wave off Kanagawa: Katsushika Hokusai, c. 1831
Lunar laser ranging: McDonald Observatory
Tower of Babel: Pieter Bruegel the Elder, c. 1563 (WebMuseum)
Lenticular/lee wave clouds: Roberta Johnson. Courtesy of Windows to 

the Universe, http://www.windows.ucar.edu
Kelvin-Helmholtz clouds: Terry Robinson/UCAR. Courtesy of Windows 

to the Universe, http://www.windows.ucar.edu
The Ancient Library of Alexandria: Wikimedia Commons
Electron cloud of a Silicon atom in GaA: M.C.M van der Wielen, 

A.J.A van Roij, and H. van Kempen, University of Nijmegen, 
http://qt.tn.tudelft.nl/publi/1998/stt/stt.html 
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