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Quantum computation

If you can maintain your computer in a Very quiet environment,
its state evolves under wave mechanics

Sometimes,
‘:“ we can design
a computation
- so that the
~ Interference
~ patterns reveal
~ structure of a
- problem we
— want to solve




Example: hidden rotational symmetry

 ——
“Fourier
sampling”
In: unif. superposition on H-periodic Out: unif.-norms superposition on
coloring of the group G=Z/N the subgroup of G perp. to the period
(for N ~ exp(n)). Here N=24, H=3. (here Z/8). Sample, repeat,

post-process to get H.



Design goal in guantum algorithms:
create huge constructive interference




What kind of problems allow such
constructive Iinterference?

Need to
create
resonance

Bennett, Bernstein, Brassard,
Vazirani 94: Quantum search

among 2" items requires
time > 22,

I.e. (relative to an oracle),
no subexponential-time
algorithm for NP.

Quantum computers, like
classical ones, can quickly
solve only structured problems.




Exponential speedup quantum
algorithms

ABELIAN HIDDEN SUBGROUP PROBLEM
(+ closely related)
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cont. example: hidden rotational
symmetry

ﬁ
“Fourier

sampling”

For binary functions, Simon/Shor insufficient;
use also Hales Hallgren *00.



Exponential speedup quantum
algorithms

ABELIAN HIDDEN SUBGROUP PROBLEM
(+ closely related)
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What about reflection symmetry?
Dihedral group: nonabelian

“Fourier

sampling”

Instead of the dual group G, now use the nonabelian Fourier transform
(decomposition of the group algebra into irreducible subspaces).
Ettinger Hoyer ‘00: polynomially-many samples suffice. But no algorithm.



Exponential speedup quantum
algorithms: beyond abelian HSP

NONABELIAN HIDDEN SUBGROUP PROBLEM
(+ closely related)
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Applications of the nonabelian HSP
and related problems

1. Symmetric group:
Graph Automorphism <., Symmetric Group HSP

2. Symmetric Group HSP <., Code Equivalence (McEliece ‘78,

Petrank Roth *97)

3. Dihedral group: Regev ‘02:
n'>-uSVP <, Dihedral HSP (single-register coset sampling)

<ou Avg-case Subset Sum

Regev ’04: for some constant c,
n°-uSVP <., Dihedral HSP (same sampling)

uSVP is an important problem: Ajtai ‘96, Ajtai Dwork ‘96,
Regev ‘04: public-key cryptosystem based on worst-case
hardness of n'>-uSVP. Note, n®>>-uSVP is NP-hard.



Limits to quantum algorithms
for the HSP In S

Hallgren Russell Ta-Shma ’00: weak sampling fails
Grigni Schulman Vazirani Vazirani *01: random bases fail

Moore Russell Schulman ’05: single-register algs f
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LGS )’-{.e_%isters algs fail
Moore Russell Sniady,‘07: Kuperb:
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Then
x(m)/d, | < ((c max{1,t(m)*/n} )2

(Here d, 1s the dimension, and ¥, is the character, of irrep A).

In Moore Russell Sniady ‘07 this ensures an upper bound on the variation
variation distance between the statistics of the output of the algorithm
algorithm when the hidden subgroup is trivial, and when it is nontrivial.
nontrivial.




Other exponential speedup quantum
~ algorithms
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“Optically” driven algorithm design:
find the centers of (a flat of) spheres

The plane here
represents the finite
geometry (GF/q)d.
Start w. wave on

the “external”
(meaningless for
e We find
sphere

p I:> ‘ < exponential
Can show: speedup
Prob. of landing quant.um
at center is at least o ?ﬂgorlthms
O algebras, not

- just any

Hilbert space




Some potential targets

New algorithms for HSP in S, . How to use highly entangled
measurements?

“Post-quantum crypto:” try to rely on problems we really think
aren’t in BQP, e.g., HSP in S_. New key exchange protocol
to replace Diffie Hellman?

Improve dihedral alg; crack cryptosystems based on SVP.

Improve Grobner basis, ideal membership computation. (Note:
ideal membership is EXPSPACE-complete: Mayr Meyer ‘82)
{linear algebra, univariate gcd} < Grobner < Knuth-Bendix

Many physical quantum systems are only “slightly quantum”:

e.g., low-entanglement 1D or 2D systems. (Motivates MPS,
PEPS methods.) Simulate such quantum systems with

quantum resources proportional only to this measure.
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