

Quantum Architecture: From Devices to Systems

Workshop on Quantum Information Science – Vienna, VA April 24, 2009

Isaac Chuang
MIT EECS & Department of Physics

The Q. Architecture Challenge

DiVIncenzo

- 1.Qubits
- 2.Universal gates
- 3.Input state
- 4.Measurement

Theory

Lessons learned...?

Architecture: Lessons

Devices + Architecture = System which is...

- 1. Reliable
- 2. Parallelizable
- 3. Programmable
- 4. Debuggable
- 5. Predictable

Device Scalability

Why are vacuum tubes (or CMOS) scalable?

- Quantum gates are intrinsically unstable!
- Need a different approach: Error Correction

Fault Tolerance Theorem

Reliable computers can be constructed from faulty components

• A circuit containing N (error-free) gates can be simulated with probability of error at most ϵ , using N log(N/ ϵ) faulty gates, which fail with probability p, so long as p<p_{th}. von Neumann++ (1956)

Quantum version: Shor, Preskill, Aharonov, Ben-Or, Knill, Laflamme, Zurek, ...

Fault Tolerance & QC

 In a FT QC, >99% of resources spent will probably go to quantum error correction!

The requirements for fault-tolerance determine how a quantum computer may be physically realized

• Max device err p_{th} = (# ways to get > 1 error)⁻¹

Case Study: Linear Optics

- Capability:
 - Reliable single qubit ops
 - CNOT with p_{fail} ~ 89%
- Recipe:

Ralph, Rep. Prog. Phys. **69** (2006)

- Repeat ancilla states creation until successful
- Rely on good photon-number measurements
- $p_{th} < 3 \times 10^{-3}$ photon loss, 10^{-4} depolarization
- Need ~10²⁰ bell pairs per operation!

Dawson, Haselgrove, Nielsen, PRL 96, 020501 (2006); quantph 0601066

Architecture: Lessons

Devices + Architecture = System which is...

1. Reliable

- > 99% of QC = Error Correction
- 2. Parallelizable
- 3. Programmable
- 4. Debuggable
- 5. Predictable

Q Factoring: Space vs Time

- Problem: Factor N bit number
- Shor's algorithm needs

~N	~2N ²	~N ³	qubits
~N ³	~9N(log ² N)	~log ³ N	steps

• Ex: $N=663 \Rightarrow 10^6$ qubits, ~ 10^6 ops 150 hours (1Hz QC) ...6 days!

Scheduling Q. Resources

Problem: qubit movement & gates

Results:

- QUALE (U. Wash.): map q. circuit onto physical layout, using Path-Finder (ions)
- QPOS (U. Davis): schedule physical ops; classical instr. scheduling heuristics (dots)
- QPU toolchain (Princeton): stagger ops to optimize fault tolerance (e⁻ on LHe)
- Quantum CAD (Berkeley): dataflowanalysis; greedy congestion relief (ions)

Figure 4: An overview of our CAD flow for quantum circuits. Ovals represent files; rectangles represent tools.

Architecture: Lessons

Devices + Architecture = System which is...

- 1. Reliable > 99% of QC = Error Correction
- 2. Parallelizable Depth / Time / Movement Tradeoff
- 3. Programmable
- 4. Debuggable
- 5. Predictable

Quantum Circuit Model

CNOT + single qubit gates, |0>,

Quantum controlled QC

Model: teleport gates...

Catch – only certain programs efficiently implementable

Quantum Software

- Universal, Fault Tolerant QC:
 - Single qubit operations
 - Bell basis measurements
 - A supply of entangled states

D. Gottesman, I. Chuang, Nature, v402, p390, 1999

Quantum: uncopyable & single-use!

- Inherently hold value marketable commodities
- Significantly simplify hardware requirements
 - Can be checked at the factory
 - Delivered via a "quantum internet"

Measurement-based QC

R. Raussendorf and H. J. Briegel. PRL 86(22):5188-5191, 2001

Recipe: Create state, then measure

"measurement" based models of QC

Q. Programming Languages

Highly active field!

- •QRAM (Knill'96): register machine
- •QCL (Omer'98-'03): C-like
- **Quantum** λ-calculus (Maymin'96,...)
- •QML (Altenkrich & Grattage'05): q. control & data
- Meas. QC (Danos et al'04,...): patterns
- •QPAIg (Jorrand'04-...): formal verification
- •Q-HSK, SQRAM, Q-gol, qGCL...
- 100 papers (1996-2007)
- Open issue: fault tolerance?

Quantum Operations:

h	dN	Basic quantum primitives such as Hadamard (H), invert (X), invert phase (Z), arbitrary rotation (R), and phase gate (S)	
х	dΝ		
z	qN		
rot	qN,real		
s	dΝ		
v	qN,qC,real	rotate qN about X axis, conditional on qC, by real	
cnot	qN,qC	flip qN conditional on qC	
swap	qN1,qN2	swap qN1 and qN2	
toffoli	qN,qC1,qC2	flip qN conditional on qC1, qC2	
measure	cT, qN	measure qN place result in cT	

QUALE (U. Washington)

Architecture: Lessons

Devices + Architecture = System which is...

- 1. Reliable > 99% of QC = Error Correction
- 2. Parallelizable Depth / Time / Movement Tradeoff
- 3. Programmable Many new models ; FT lang?
- 4. Debuggable
- 5. Predictable

Architecture Concepts

1940's: von Neumann – Programmable Systems

- Stored program; modular design
- Blocks simplify debugging!

Architecture Concepts

Modern Q. computer arch. = seek reliability

Knill; Nielsen & Chuang; Steane; Chong, Chuang, Kubiatowicz, Oskin – IEEE Computer 2006

Architecture: Lessons

Devices + Architecture = System which is...

- 1. Reliable > 99% of QC = Error Correction
- 2. Parallelizable Depth / Time / Movement Tradeoff
- 3. Programmable Many new models ; FT lang?
- 4. Debuggable Wires = teleport; power = entanglement
- 5. Predictable

Real large-scale computing systems are designed & verified far in advance of implementation, with predictive tools

Whirlwind \rightarrow SPICE \rightarrow ... Behavioral synthesis \rightarrow Formal verification \rightarrow Physical verification

Large Scale, Reliable QC

- System: 10⁶ qubits, >10⁶ logical gates
- FTQC ~10⁷ to 10⁸ qubits & physical gates (7-qubit Steane code, 1-2 concat. levels)
- Questions:
 - How many lasers required? Laser power?
 - How large an ion trap chip?
 - What kind & size of classical control?
 - What fault tolerance threshold?

(gate / state / memory / movement)

Approach: Simulate QECC (efficient!)

Quantum Design Tools

·Vision: Layered hierarchy with simple interfaces

Predictive QC Design Tool

Predict performance before building!!

INPUT

- -Technology
 - Gate performance
 - Comm. constraints
 - Control capability
 - Memory fidelities
 - Geometric constraints
- Q. Code
- Entanglement supply

FT Eng.
Design
Analysis
simulate basic

IEEE Computer, 2002 & 2006

QEC blocks & I/O

OUTPUT

- p_{th} for gates, wires,
 memory, state supply
- Logical gate speed
- Space, time required

Trapped Ion FTQC

- Wealth of expt. data
 - Teleportation (3 ions)
 - Superdense coding (2 ions)
 - QFT; Q. error correction (3 ions)
 - GHZ and W states (4-8 ions)
- Conceptual design

Timescales				
Single Qubit Gate	1 μs			
Two Qubit Gate	10 μs			
Measure	100 μs			
Cool a linear chain	10 ms			
Movement	10 ns / μm			
Split a linear chain	1 ms			
Join two linear chains	0 seconds			
Memory time (not implemented)	100 seconds			
Failure Probabilities				
Single Qubit Gate Failure	0.0001			
Two Qubit Gate Failure	0.03			
Measurement Failure	0.01			
Movement Failure	0.005 / μm			
Heating <n></n>				
Moving a Linear Chain	0.01 quanta / μm			
Splitting a Linear Chain	1 quanta			
Cpmmig a Emeai oriani	7 quente			

If
$$p_{err}^{meas} \sim 10^{-4}$$
 $p_{th} \sim 4 \times 10^{-4}$

Cross (2006)

Kielpinski, Monroe, and Wineland, "Architecture for a Large-Scale Ion-Trap Quantum Computer," Nature 417, 709 (2002)

Trapped ion Factoring?

Case Study: Quantum Logic Array

Trapped ions ; fault tolerant ; NIST parameters

Quantum Computing for Computer Architects

Tzvetan Metodi Frederic T. Chong **TABLE 9.2:** System Numbers for Shor's Algorithm for Factoring an *N*-bit Number Using the Circuit Descriptions of [154, 155] and the QLA Microarchitecture Model. The QLA Chip Area is Determined by the Number of Logical Qubits and Channels.

	N = 128	N = 512	N = 1024	N=2048
Logical qubits	37,971	150,771	301,251	602,259
Toffoli gates	63,729	397,910	964,919	2,301,767
Total gates	115,033	1,016,295	3,270,582	11,148,214
Area (m^2)	0.11	0.45	0.90	1.80
Time (days)	0.9	5.5	13.4	32.1

SYNTHESIS LECTURES ON COMPUTER ARCHITECTURE

Mark D. Hill, Series Editor

Metodi et al, ISCA 2006

Summary

We are on the verge of being able to build largescale quantum information processing systems!

- Architecture is key*
- Challenges:
 - Build predictive tools to DESIGN & VERIFY
 - Feedback to strategically improve QC technology
 - Contribute back to classical computation (fault tolerance, low power)

^{*} Science – not just for mission agencies