# Quantum Information Science with AMO

#### implementation ...

- new AMO systems in lab → quantum info
- new "scenarios"

#### Peter Zoller

#### Innsbruck:

A. Daley

S. Diehl

A. Kantian

B. Kraus

I. Lesanovsky

A. Micheli

M. Müller

M. Ortner

G. Pupillo

#### collaborations:

M. Lukin & E. Demler (Harvard)

H.P. Büchler (Stuttgart)

Jun Ye (JILA)

H.J. Kimble (Caltech)



UNIVERSITY OF INNSBRUCK



IQOQI AUSTRIAN ACADEMY OF SCIENCES

#### **SFB**

Coherent Control of Quantum Systems

**€U** networks

# (Stroboscopic) Coherent and Dissipative Quantum Simulations with Rydberg Atoms

(or: polar molecules / trapped ions)

"exotic" many body spin systems with many body interactions / constraints



Possible models: Kitaev toric code model, color codes, lattice gauge theories

# (Stroboscopic) Coherent and Dissipative Quantum Simulations with Rydberg Atoms

(or: polar molecules / trapped ions)

"exotic" many body spin systems with many body interactions / constraints



Possible models: Kitaev toric code model, color codes, lattice gauge theories

# Topic 2:

AMO -Solid State Hybrid Systems

 strong coupling of single atom via photons to nanomechanical oscillator



see also M. Lukin's talk

Caltech + JILA + Innsbruck



# Topic 1:

# **Quantum Simulations**

#### how?

- coherent & dissipative
- "analogue" & "digital" simulation

#### **coherent** many body dynamics



#### why?

- cond mat
- simulate exotic material
- prepare entangled state (as resource)

dissipative many body dynamics



- "analogue" simulation
  - We "build" a quantum system with desired dynamics & controllable parameters, e.g. Hubbard models of atoms in optical lattices
  - •[We know how to prepare (cool to) its ground state]

exp.: almost all cold atom labs, ...

#### optical lattice emulators



It is <u>difficult</u> to mimic n-body interactions & constraints

$$\uparrow^{(n)} \sim V^{(2)} \frac{1}{E - H} V^{(2)} \dots V^{(2)} \frac{1}{E - H} V^{(2)} \rightarrow 0$$

n-body 2-body effective n-body interactions in extended perturbation theory Hubbard models

"stroboscopic" or "digital" simulation



desired many body Hamiltonian "on the average"

Q.: errors?

"digital" simulation



spin-dependent optical lattice



desired many body Hamiltonian "on the average"

Q.: errors?

exp.: Bloch, Meschede, ...

"digital" simulation



spin-dependent optical lattice



desired many body Hamiltonian "on the average"

Q.: errors?

exp.: Bloch, Meschede, ...

"digital" simulation



 $\alpha | \phi \rangle + \beta | \phi \rangle$  qubits on a lattice

entangling qubits via "Ising"

(cluster state)

desired many body Hamiltonian "on the average"
Q.: errors?

exp.: Bloch, Meschede, ...

B. Kraus et al., PRA 2008S. Diehl et al. Nature Physics 2008[see also: Verstraete, Cirac et al. 2008]

Q.: dissipative preparation of entangled states



$$\rho \to \mathcal{E}(\rho) = \sum_{k} E_{k} \rho E_{k}^{\dagger}$$

B. Kraus et al., PRA 2008S. Diehl et al. Nature Physics 2008[see also: Verstraete, Cirac et al. 2008]

Q.: dissipative preparation of entangled states



B. Kraus et al., PRA 2008S. Diehl et al. Nature Physics 2008[see also: Verstraete, Cirac et al. 2008]

Q.: dissipative preparation of entangled states



optical pumping (Kastler) or laser cooling



$$\rho(t) \xrightarrow{t \to \infty} |g_+\rangle \langle g_+|$$

driven dissipative dynamics "purifies" the state

B. Kraus et al., PRA 2008S. Diehl et al. Nature Physics 2008[see also: Verstraete, Cirac et al. 2008]

Q.: dissipative preparation of entangled states



optical pumping (Kastler) or laser cooling



$$\rho(t) \xrightarrow{t \to \infty} |g_+\rangle \langle g_+|$$

driven dissipative dynamics "purifies" the state

B. Kraus et al., PRA 2008S. Diehl et al. Nature Physics 2008[see also: Verstraete, Cirac et al. 2008]

Q.: dissipative preparation of entangled states



Lindblad master equation



$$ho(t) \xrightarrow{t o \infty} 
ho_{ss}$$
 mixed state  $\stackrel{!?}{=} |D\rangle \langle D|$  pure state ("dark state")

steady state

Q.: engineer quantum reservoirs couplings?

n-body quantum jump operators (2)

Kitaev



- toric code  $|K\rangle$  with  $\left\{S_x^{(p)}\,|K\rangle=|K\rangle\,,S_z^{(s)}\,|K\rangle=|K\rangle\right\}$  for all X and Z stabilizers
- ground state of the Kitaev toric code Hamiltonian

$$H = -h \sum_{\text{plaquette}} \sigma_x^{(1_p)} \sigma_x^{(2_p)} \sigma_x^{(3_p)} \sigma_x^{(4_p)} - h \sum_{\text{star}} \sigma_z^{(1_s)} \sigma_z^{(2_s)} \sigma_z^{(3_s)} \sigma_z^{(4_s)}$$

$$= -h \sum_{p} S_x^{(p)} - h \sum_{s} S_z^{(s)}$$

Kitaev

four body interaction  $S_x = \sigma_x^{(1)} \sigma_x^{(2)} \sigma_x^{(3)} \sigma_x^{(4)}$ 



- toric code  $|K\rangle$  with  $\left\{S_x^{(p)}\,|K\rangle=|K\rangle\,,S_z^{(s)}\,|K\rangle=|K\rangle\right\}$  for all X and Z stabilizers
- ground state of the Kitaev toric code Hamiltonian

$$H = -h \sum_{\text{plaquette}} \sigma_x^{(1_p)} \sigma_x^{(2_p)} \sigma_x^{(3_p)} \sigma_x^{(4_p)} - h \sum_{\text{star}} \sigma_z^{(1_s)} \sigma_z^{(2_s)} \sigma_z^{(3_s)} \sigma_z^{(4_s)}$$

$$= -h \sum_{p} S_x^{(p)} - h \sum_{s} S_z^{(s)}$$

**Kitaev** 

four body interaction 
$$S_x=\sigma_x^{(1)}\sigma_x^{(2)}\sigma_x^{(3)}\sigma_x^{(4)}$$
 
$$S_z=\sigma_z^{(1)}\sigma_z^{(2)}\sigma_z^{(3)}\sigma_z^{(4)}$$



- toric code  $|K\rangle$  with  $\left\{S_x^{(p)}\left|K\right\rangle=\left|K\right\rangle,S_z^{(s)}\left|K\right\rangle=\left|K\right\rangle\right\}$  for all X and Z stabilizers
- ground state of the Kitaev toric code Hamiltonian

$$H = -h \sum_{\text{plaquette}} \sigma_x^{(1_p)} \sigma_x^{(2_p)} \sigma_x^{(3_p)} \sigma_x^{(4_p)} - h \sum_{\text{star}} \sigma_z^{(1_s)} \sigma_z^{(2_s)} \sigma_z^{(3_s)} \sigma_z^{(4_s)}$$

$$= -h \sum_{n} S_x^{(p)} - h \sum_{s} S_z^{(s)}$$

**Kitaev** 

four body interaction 
$$S_x=\sigma_x^{(1)}\sigma_x^{(2)}\sigma_x^{(3)}\sigma_x^{(4)}$$
 
$$S_z=\sigma_z^{(1)}\sigma_z^{(2)}\sigma_z^{(3)}\sigma_z^{(4)}$$



- toric code  $|K\rangle$  with  $\left\{S_x^{(p)}\left|K\right\rangle=\left|K\right\rangle,S_z^{(s)}\left|K\right\rangle=\left|K\right\rangle\right\}$  for all X and Z stabilizers
- ground state of the Kitaev toric code Hamiltonian

$$H = -h \sum_{\text{plaquette}} \sigma_x^{(1_p)} \sigma_x^{(2_p)} \sigma_x^{(3_p)} \sigma_x^{(4_p)} - h \sum_{\text{star}} \sigma_z^{(1_s)} \sigma_z^{(2_s)} \sigma_z^{(3_s)} \sigma_z^{(4_s)}$$

$$= -h \sum_{p} S_x^{(p)} - h \sum_{s} S_z^{(s)}$$

- Q.: can we simulate the toric code 4-body Hamiltonian?
- Q.: can we prepare the ground state dissipatively?

with Rydberg atoms & dipolar interactions

Rydberg implementation





**Rydberg implementation** 

via Rydberg dipole-dipole

four-body interaction term 
$$S_x = \sigma_x^{(1)} \sigma_x^{(2)} \sigma_x^{(3)} \sigma_x^{(4)}$$





**Rydberg implementation** 

via Rydberg dipole-dipole

four-body interaction term 
$$S_x = \sigma_x^{(1)} \sigma_x^{(2)} \sigma_x^{(3)} \sigma_x^{(4)}$$

... can be simulated with help of an auxiliary X-controller atom





**Rydberg implementation** 

via Rydberg dipole-dipole

four-body interaction term 
$$S_x = \sigma_x^{(1)} \sigma_x^{(2)} \sigma_x^{(3)} \sigma_x^{(4)}$$

... can be simulated with help of an auxiliary X-controller atom





pumping stabilizer states





$$T_x: \rho_s \mapsto A_1 \rho_s A_1^\dagger + A_2 \rho_s A_2^\dagger$$
 
$$\uparrow \qquad \uparrow$$
 
$$A_1 = \frac{1}{2} \left(1 - S_x\right) = A_1^\dagger \qquad A_2 = \frac{1}{2} \sigma_z^{(i)} \left(1 + S_x\right) \neq A_2^\dagger$$
 if +1, do nothing if -1, pump

$$\sigma_x |\pm\rangle = \pm |\pm\rangle$$

4 & 5 body operators 🕾

n-qubit gate + optical pumping of the Rydberg atom



#### Building Block: n-qubit CNOT Rydberg Gate

#### gate: ingredients

- atoms in a large spacing optical lattice: addressability [D. Weiss]
- Rydberg dipole-dipole



#### features:

- √ High fidelity even for moderately large # qubits
- √ Fast 3 laser pulses
- ✓ Long-range interactions
- √ Robust with respect to
  - inhomogeneities in the interparticle distances
  - variations in the interaction strengths
  - no mechanical effects
- ✓ experimentally realistic parameters

dark state magic

# resource: our multi-qubit CNOT-gate

$$G = |0\rangle_c \langle 0| \otimes 1 + |1\rangle_c \langle 1| \otimes \sigma_x^{(1)} \sigma_x^{(2)} \sigma_x^{(3)} \sigma_x^{(4)}$$





 $\begin{array}{c|c} {\color{red}\triangleright} \ \, \text{composed} \\ \text{ evolution} \end{array} \, \left| \Psi' \right> = U |\Psi \rangle$ 

$$U \equiv \exp(-iH\tau/\hbar)$$

with

$$H = -\frac{\hbar \alpha}{\tau} \sigma_x^{(1)} \sigma_x^{(2)} \sigma_x^{(3)} \sigma_x^{(4)}$$

- > stroboscopic simulation
- ▶ ... and similar for ZZZZ

#### our multi-qubit CNOT-gate

$$G = |0\rangle_c \langle 0| \otimes 1 + |1\rangle_c \langle 1| \otimes \sigma_x^{(1)} \sigma_x^{(2)} \sigma_x^{(3)} \sigma_x^{(4)}$$



$$|\pm\rangle = \frac{1}{\sqrt{2}}(|A\rangle \pm |B\rangle)$$

$$\sigma_{\pm}|\pm\rangle = \pm |\pm\rangle$$



#### our multi-qubit CNOT-gate

$$G = |0\rangle_c \langle 0| \otimes 1 + |1\rangle_c \langle 1| \otimes \sigma_x^{(1)} \sigma_x^{(2)} \sigma_x^{(3)} \sigma_x^{(4)}$$



$$|\pm\rangle = \frac{1}{\sqrt{2}}(|A\rangle \pm |B\rangle)$$

$$\sigma_{\pm}|\pm\rangle = \pm|\pm\rangle$$

$$R = \exp(i \alpha \sigma_z^{(c)})$$
 small local rotation of the control atom  $lpha \ll 1$ 



#### our multi-qubit CNOT-gate

$$G = |0\rangle_c \langle 0| \otimes 1 + |1\rangle_c \langle 1| \otimes \sigma_x^{(1)} \sigma_x^{(2)} \sigma_x^{(3)} \sigma_x^{(4)}$$



$$|\pm\rangle = \frac{1}{\sqrt{2}}(|A\rangle \pm |B\rangle)$$

$$\sigma_{\pm}|\pm\rangle = \pm|\pm\rangle$$

$$R = \exp(i\alpha\sigma_z^{(c)})$$
 small local rotation of the control atom

$$\alpha \ll 1$$



#### our multi-qubit CNOT-gate

$$G = |0\rangle_c \langle 0| \otimes 1 + |1\rangle_c \langle 1| \otimes \sigma_x^{(1)} \sigma_x^{(2)} \sigma_x^{(3)} \sigma_x^{(4)}$$



$$|\pm\rangle = \frac{1}{\sqrt{2}}(|A\rangle \pm |B\rangle)$$

$$\sigma_{\pm}|\pm\rangle = \pm |\pm\rangle$$

$$(|A\rangle\pm|B\rangle)$$
  $R=\exp(ilpha\sigma_z^{(c)})$  small local rotation of the control atom

$$\alpha \ll 1$$



composed $|\Psi'\rangle = U|\Psi\rangle$ evolution

$$U \equiv \exp(-iH\tau/\hbar)$$

with

$$H = -\frac{\hbar\alpha}{\tau}\sigma_x^{(1)}\sigma_x^{(2)}\sigma_x^{(3)}\sigma_x^{(4)}$$

#### our multi-qubit CNOT-gate

$$G = |0\rangle_c \langle 0| \otimes 1 + |1\rangle_c \langle 1| \otimes \sigma_x^{(1)} \sigma_x^{(2)} \sigma_x^{(3)} \sigma_x^{(4)}$$



$$|\pm\rangle = \frac{1}{\sqrt{2}}(|A\rangle \pm |B\rangle)$$

$$\sigma \cdot |\pm\rangle - \pm |\pm\rangle$$

$$\sigma_{\pm}|\pm\rangle = \pm|\pm\rangle$$

$$R = \exp(i\alpha\sigma_z^{(c)})$$
 small local rotation of the control atom

$$\alpha \ll 1$$



composed  $|\Psi'\rangle = U|\Psi\rangle$ evolution

$$U \equiv \exp(-iH\tau/\hbar)$$

with

$$H = -\frac{\hbar\alpha}{\tau}\sigma_x^{(1)}\sigma_x^{(2)}\sigma_x^{(3)}\sigma_x^{(4)}$$

- stroboscopic simulation
- energy scale set by rotation angle lpha and gate duration  $\ au$

map the eigenvalue information onto the controller

$$S_x |\Psi\rangle = +1 |\Psi\rangle \qquad S_x |\Psi\rangle = -1 |\Psi\rangle$$

Hilbert space of the four spins



|              | <b>&gt;</b> | time |
|--------------|-------------|------|
| $ 0\rangle$  |             |      |
| \            |             |      |
| $\ket{\Psi}$ |             |      |
|              |             |      |

map the eigenvalue information onto the controller







map the eigenvalue information onto the controller



conditional spin flip of one qubit

$$C = |0\rangle_c \langle 0| \otimes 1 + |1\rangle_c \langle 1| \otimes \exp(i\phi\sigma_z^{(1)})$$

$$U_{\pi/2}^{(c)} \quad G \quad (U_{\pi/2}^{(c)})^{-1}$$

$$\downarrow 0$$

$$\Psi \rangle$$

$$\downarrow 0$$



map the eigenvalue information onto the controller



conditional spin flip of one qubit

$$C = |0\rangle_c \langle 0| \otimes 1 + |1\rangle_c \langle 1| \otimes \exp(i\phi\sigma_z^{(1)})$$
 
$$U_{\pi/2}^{(c)} \qquad G \qquad (U_{\pi/2}^{(c)})^{-1} \qquad \text{time}$$
 
$$|0\rangle \qquad \qquad |0\rangle \qquad \qquad |0\rangle$$



map the eigenvalue information onto the controller





conditional spin flip of one qubit

$$C = |0\rangle_c \langle 0| \otimes 1 + |1\rangle_c \langle 1| \otimes \exp(i\phi\sigma_z^{(1)})$$
 dissipative step: optical pumping of the control atom 
$$|0\rangle$$
 
$$\Psi\rangle$$
 undo the mapping step

# 2. Dissipative Step

map the eigenvalue information onto the controller





conditional spin flip of one qubit

$$C = |0\rangle_c \langle 0| \otimes 1 + |1\rangle_c \langle 1| \otimes \exp(i\phi\sigma_z^{(1)})$$
 dissipative step: optical pumping of the control atom 
$$|0\rangle$$
 
$$\Psi\rangle$$
 undo the mapping step

# Coherent and Dissipative Time Evolution



We have obtained ...

Lindblad master equation

$$\frac{d}{dt}\rho = -i\left[H,\rho\right] + \gamma\left(c\rho c^{\dagger} - \frac{1}{2}c^{\dagger}c\rho - \rho\frac{1}{2}c^{\dagger}c\right)$$

Coherent evolution: Hamiltonian

$$H = h\sigma_x^{(1)}\sigma_x^{(2)}\sigma_x^{(3)}\sigma_x^{(4)} \qquad (h = -\frac{\alpha}{\tau})$$

Dissipative evolution: quantum jump operator

$$c = \sqrt{\gamma}\sigma_z^{(1)} \left(1 - \sigma_x^{(1)}\sigma_x^{(2)}\sigma_x^{(3)}\sigma_x^{(4)}\right) \qquad (\gamma = \frac{\phi^2}{\tau})$$

- Sweeping over the lattice ...
  - we simulate the toric code Hamiltonian
  - we pump into the ground state

# Outlook

• Rydberg quantum simulator



Possible models: Kitaev toric code model, color codes, lattice gauge theories





#### systems:

- superconducting qubits
- quantum dot spin qubits
- impurities: NV centers etc.
- nuclear spin ensembles
- photons / CQED
  - optical / photonic cavities
  - microwave / sc stripline
- nano-mechanics
  - opto-/electro-
- •

#### trademark:

- nanotechnology
- scalability

... success stories ...

- atoms, ions, molecules
  - single atoms and ensembles
  - trapping and cooling (BEC)
- photons / CQED
  - cavities: optical and microwave
  - free space
- ...

"ideal" quantum systems



challenge: "hybrid systems"

- develop coherent quantum interface between solid state and AMO systems
  - basic building block
  - goal: combining advantages (benefit from complementary toolboxes) with compatible experimental setups

whatever

example:



### challenge: "hybrid systems"

- hybrid quantum processor
- •
- solid state traps / elements for AMO physics
  - benefit from nanofabrication / integration (scalability)
  - new physics ...
- nanotraps / scalable
- mediated interactions





### quantum interface - how?

- optical photons
- microwave photons
- direct coupling

- free space / long distance
- cavities
- trapping close to surface, in cryostat?

deterministic & probabilistic protocols



### quantum interface - how?

- optical photons
- microwave photons
- direct coupling

- free space / long distance
- cavities
- trapping close to surface, in cryostat?

deterministic & probabilistic protocols



### quantum interface - how?

- optical photons
- microwave photons
- direct coupling

- free space / long distance
- cavities
- trapping close to surface, in cryostat?

 deterministic & probabilistic protocols

# **Examples:**

- Opto-Nanomechanics + Atom(s)
- Circuit QED + Polar Molecules
- CQED: Microtoroids + Atoms (Quantum Networks)
- Nanoscale AMO physics

#### **Quantum Networks**



Nanoscale AMO



Caltech+Harvard+Yale+Innsbruck

Caltech



#### **Hybrid Quantum Processors**



Harvard+Yale+Innsbruck

# Opto-nanomechanics + atom(s)

QND measurement based EPR entanglement between oscillator + atomic ensembles



# Opto-nanomechanics + atom(s)

QND measurement based EPR entanglement between oscillator + atomic ensembles



Free space coupling between nanomechanical mirror + atomic ensemble



Innsbruck + Munich

# Opto-nanomechanics + atom(s)

QND measurement based EPR entanglement between oscillator + atomic ensembles



Free space coupling between nanomechanical mirror + atomic ensemble



... and strong coupling between a single atom and a membrane



with existing experimental setups & parameters :-)

Caltech + Munich + Innsbruck, preprint



✓ cavity mediated: coupling ~ finesse

√ coherent coupling >> dissipation

K. Hammerer, C. Genes, M. Wallquist, P. Treutlein, M. Ludwig, F. Marquardt, J. Ye, J. Kimble, PZ













membrane



moving membrane displaces atom trap coupling ~ finesse









moving membrane displaces atom trap coupling ~ finesse

coherent coupling >> dissipation

$$H=\omega_{
m m}a_m^\dagger a_m+\omega_{
m t}a_a^\dagger a_a+g(a_m^\dagger a_a+{
m h.c.})$$
 oscillator atom

• (quantum) noise & imperfections

membrane:

√damping

✓ temperature

√laser heating

atom + cavity:

√cavity damping

✓ spontaneous emission

√...

### Numbers:

## strong coupling for existing setups & parameters

| ADJUSTABLE |
|------------|
| PARAMETERS |

mechanical
frequency:

membrane mass:

cavity length:

cavity waist:

detuning from
cavity resonance:

imbalance
in couplings:

rotating
wave parameter:

#### FIGURES OF MERIT

Lamb Dicke parameter:

decoherence due
to cavity decay:

decoherence due to spontaneous emission:

decoherence due to thermal heating:

circulating power:

sideband parameter:

relative shift of lattices:

$$\omega_{\rm m}/2\pi = 0.78 \, \mathrm{MHz}$$

$$m_m = 1.00 \text{ ng}$$

$$L = 50. \mu m$$

$$w0 = 10.00 \mu m$$

$$\triangle$$
 = 9.99  $\times$   $\kappa$ C

$$s = 0.65 = \frac{g0}{G0}$$

$$r = 0.100 = \frac{\lambda}{\omega_{\rm m}}$$

#### $kc \times lat = 0.051$

$$\frac{\Gamma c}{r} = 0.055$$

$$\frac{\Gamma \text{at}}{\lambda} = 0.056$$

$$\frac{\Gamma m}{\lambda} = 0.053$$

$$P_{circ} = 3.94 \text{ mW}$$

$$\frac{\kappa c}{\omega m} = 19.00$$

$$1 = 1.60 \text{ nm}$$

#### ABSOLUTE NUMBERS

Atom-membrane coupling:

Decoherence rate due to cavity decay:

Decoherence rate due to spontaneous emission:

Decoherence rate due to thermal heating:

detuning from
atomic resonance:

single photon Rabi frequency:

energy shift
per single photon
and single atom:

single photon optomechanical coupling:

$$\Gamma c/2\pi = 4.33 \text{ kHz}$$

$$\Gamma at/2\pi = 4.36 \text{ kHz}$$

$$\Gamma m/2\pi = 4.17 \text{ kHz}$$

$$\delta/2\pi = 9.81 \text{ GHz}$$

$$gc/2\pi = 73.7 \text{ MHz'}$$

$$U/2\pi = 553. \text{ kHz}$$

$$g0/2\pi = 18.5 \text{ kHz}$$

30

K. Hammerer, C. Genes

H. J. Kimble & J. Ye

P. Treutlein

## Transfer of a n=1 Fock state: membrane - atom

#### Wigner function atom

# atom initial state n=1 0.1 -0.1 -0.2

## Wigner function membrane



bad / good ~ 15%

(present experimental parameters)

# Transfer of a n=1 Fock state: membrane - atom

## Wigner function atom



#### Wigner function membrane



bad / good ~ 5%

# Transfer of a Squeezed State



## **Conclusions and Outlook**

**Hybrid Quantum Processors** 

CPB

molecules

 develop coherent quantum interface between solid state and AMO systems

- basic building block
- goal: combining advantages (benefit from complementary toolboxes) with compatible experimental setups
- hybrid quantum processor
- AMO based preparation / measurement / sensors
- solid state traps / elements for AMO physics
  - benefit from nanofabrication / integration (scalability)
  - new physics ...





#### **Quantum Networks**



#### Nanoscale AMO





# Traps for AMO:

- ... integration of AMO with on-chip devices
- ... towards AMO physics on the nanoscale

# Scalable Ion Trap Quantum Computing

present approach: physically transporting qubit

ion trap quantum computer



idea: Wineland et al.

exp.: Innsbruck, NIST Boulder, JQI, Oxford,...

cryogenic traps: MIT



R. Slusher, Georgia Tech

(also: C. Monroe & K. Schwab)

50  $\mu$ m scale

# Scalable Ion Trap Quantum Computing

present approach: physically transporting qubit

ion trap quantum computer



idea: Wineland et al.

exp.: Innsbruck, NIST Boulder, JQI, Oxford,...

cryogenic traps: MIT

hybrid

e.g. wire



connecting two quantum optical qubits by a (passive) solid state bus



interfacing active devices

theory: L. Tian et al.

exp.: H. Häffner & R. Blatt / Walraff

compare: polar molecule / Rydberg

# Towards AMO physics on the nanoscale

- Tightly confined radiation for trapping, cooling of isolated atoms
- Example: dipole traps & optical lattices using plasmons





- 1. sharp, conducting nanotip illuminated by light:"lightning rod" effect = trap
- coupling to plasmon modes = read out,
   (and interactions)
- 3. surface effects: Van der Waals and "polarization noise"
- Tight atom confinement, large energy scales
- Strong blue "shield" for nanotip: for suspended wires van der Waals significant only @ distances < wire size

D.Chang et al., Park / PZ / M Lukin, in preparation See also: nano-particle plasmon tweezer @ICFO (Barcelona), atoms around nanotubes ideas (Hau)

# Towards AMO physics on the nanoscale

- Tightly confined radiation for trapping, cooling of isolated atoms
- Example: dipole traps & optical lattices using plasmons



- silver nanotip and sodium atoms
- Distance from trap  $z_{\rm trap}=30{\rm nm}$
- Effective cooperativity  $C\sim 4$



 Nonlinear optics: single photon switches and transistors



D. Chang et al, Nature Physics (2007)

 Nonlinear optics: single photon switches and transistors



D. Chang et al, Nature Physics (2007)



 Single atom positioning and control for CQED

 Nonlinear optics: single photon switches and transistors



D. Chang et al, Nature Physics (2007)



 Scanning sensors based on single atoms  Single atom positioning and control for CQED



 Nonlinear optics: single photon switches and transistors



D. Chang et al, Nature Physics (2007)



 Scanning sensors based on single atoms









 Lattices with sub-wavelength control (e.g quantum simulation)