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The goal of fault-tolerant quantum computing is to operate a 
large-scale (quantum) computer reliably, even though the 

components of the computer are noisy.

Reliability can be enhanced by encoding the computer’s state in 
the blocks of a quantum error-correcting code. Each “logical”

qubit is stored nonlocally, shared by many physical qubits, 

and can be protected if the noise is sufficiently weak and also 
sufficiently weakly correlated in space and time. 

Two central questions are:

1) For what noise models does fault-tolerant quantum computing 
work effectively?

2) For a given noise model, what is the overhead cost of 

simulating an ideal quantum computation with noisy 
hardware?

Quantum fault tolerance



To really operate a large-scale quantum computer, many 
implementation-specific systems engineering issues will 

need to be addressed. 

I am a theoretical physicist, not an engineer, yet I have devoted 
much of my research effort since 1995 to quantum fault 

tolerance, because I believe that this subject raises 

questions and stimulates insights that are of broad and 
fundamental interest in quantum information science. 

And .. whatever the applications turn out to be, the quest for a
large-scale quantum computer is (in my opinion) one of the 

grand scientific challenges of the 21st century. Will we be 

able to overcome the debilitating effects of decoherence and 
realize subtle interference phenomena in systems with many 

degrees of freedom? If so, these systems are bound to 
behave in ways that will surprise and delight us.
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Quantum fault tolerance overlaps strongly with other topics that
are being discussed at this workshop.

In topological quantum computing, quantum gates are protected 

from noise at the physical level. Here, too, the key notion is 
that by encoding quantum information nonlocally (in the 

fusion spaces of many nonabelian anyons) it can be 

protected against damage due to local noise. [Freedman talk]

Methods from quantum control theory (e.g., dynamical 

decoupling, noiseless subsystems) can also reduce the 
damaging effects of noise, though these methods do not 

suffice by themselves to ensure scalability. [Whaley talk]

The elements of quantum fault tolerance guide the design of 

quantum computer architectures. [Chuang talk]

Quantum fault tolerance
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Errors
The most general type of error acting on n qubits can be 

expressed as a unitary transformation acting on the qubits and 

their environment:
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The states of the environment are neither normalized 

nor mutually orthogonal. The operators are a basis for 
operators acting on n qubits, conveniently chosen to be “Pauli 

operators”:

where

The  errors could be “unitary errors” if or 
decoherence errors if the states of the environment are 
mutually orthogonal.



Errors

Our objective is to recover the (unknown) state of the 
quantum computer. We can’t expect to succeed for arbitrary 

errors, but we might succeed if the errors are of a restricted 

type. In fact, since the interactions with the environment are 
local, it is reasonable to expect that the errors are not too 

strongly correlated.

Define the “weight” w of a Pauli operator to be the number of 
qubits on which it acts nontrivially; that is X,Y, or Z is applied to w

of the qubits, and I is applied to n-w qubits. If errors are rare and 

weakly correlated, then Pauli operators       with large weight 
have small amplitude
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Error recovery
We would like to devise a recovery procedure that acts on the 
data and an ancilla:

which works for any

Then we say that we can “correct t errors” in the block of n

qubits.  Information about the error that occurred gets 
transferred to the ancilla and can be discarded:      
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Error recovery

Errors entangle the data with the environment, producing 
decoherence. Recovery transforms entanglement of the 

data with the environment into entanglement of the ancilla

with the environment,  “purifying” the data. Decoherence
is thus reversed. Entropy introduced in the data is transferred to 

the ancilla and can be discarded --- we “refrigerate” the data at 
the expense of “heating” the ancilla. If we wish to erase the 

ancilla (cool it to so that we can use it again) we need to 

pay a power bill.
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Quantum error-correcting code
We won’t be able to correct all errors of weight up to t for 

arbitrary states But perhaps we can succeed 

for states contained in a code subspace of the full Hilbert space,

If the code subspace has dimension 2k, then we say that k
encoded qubits are embedded in the block of n qubits.

How can such a code be constructed? It will suffice if 

are mutually orthogonal (“nondegenerate code”).

If so, then it is possible in principle to perform an (incomplete) 
orthogonal measurement that determines the error E

a
(without 

revealing any information about the encoded state). We recover 
by applying the unitary transformation E

a
-1.

 qubits.| nψ 〉∈H

code  qubits .n∈H H

{ }{ }code Pauli operators of weight,a aE E t∈ ≤H



Fault tolerance

In principle, quantum error-correcting codes allow us to recover 
from the damage due to errors with low weight. But the recovery 

operation is itself a quantum computation. Will the recovery 

really work if the quantum gates that we use to recover from 
error are themselves noisy? 

Furthermore, we need to do more than just store a quantum 

state with high fidelity; we also need to process the information 
protected by the code. How do we devise a universal set of 

quantum gates that act on the encoded quantum states, without 

inflicting irreversible damage on the data?



Fault-tolerant quantum gates

If we simulate an ideal circuit with L quantum gates, and faults occur 

independently with probability ε at each circuit location, then the probability of 
failure is 2

fail maxP LA ε≤
where Amax is an upper bound on the number of (malignant) pairs of circuit

locations in each extended rectangle. Therefore, by using a quantum code that 
corrects one error and  fault-tolerant quantum gates, we can improve the circuit 

size that can be simulated reliably to L=O(ε −2), compared to L=O(ε −1) for an 
unprotected quantum circuit. 

Error
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Error

Correction
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Quantum 

Gate

Each gate is followed by an error correction step. The circuit 
simulation fails only if two faults occur in some “extended rectangle.”



4 ×142 + 7 = 575 locations

165,025 pairs of locations

35,235 malignant pairs of locations

Example: CNOT extended rectangle for a 7-qubit code



Recursive simulation
In a fault-tolerant simulation, each (level-
0) ideal gate is replaced by a 1-gadget: a
(level-1) gate gadget followed by (level-1)  
error correction on each output block. In a 
level-k simulation, this replacement is 
repeated k times --- the ideal gate is 
replaced by a k-gadget.

A 1-gadget is built 

from quantum gates.

A 2-gadget is built 

from 1-gadgets.

A 3-gadget is built 

from 2-gadgets.

The effective noise for the level-1 
gadget has  a “renormalized” strength: 
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Accuracy Threshold
Quantum Accuracy Threshold Theorem: Consider a 
quantum computer subject to local stochastic noise with 

strength ε . There exists a constant ε0 >0 such that for a fixed ε
< ε0 and fixed δ > 0, any circuit of size L can be simulated by a 
circuit of size L* with accuracy greater than 1-δ, where, for 
some constant c, 

( )* log
c
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The numerical value of the accuracy threshold ε0 is of practical 
interest …

parallelism, fresh qubits (necessary assumptions) 

nonlocal gates, fast measurements, fast and accurate classical 
processing, no leakage (convenient assumptions). 

assuming:

Aharonov, Ben-Or 

Kitaev

Laflamme, Knill, Zurek

Aliferis, Gottesman, Preskill

Reichardt



Accuracy Threshold

Accuracy threshold theorems have been proved 
for three types of fault-tolerant schemes:

Recursive: hierarchy of gadgets within 
gadgets, with logical error rate decreasing 

rapidly with level.

Topological: check operators are local on a two-
dimensional surface, and detect the boundary

points of error chains. Logical error rate decays 

exponentially with block’s linear size. 

Teleported: Encoded Bell pairs are 
prepared recursively, but used only at 

the top level. The (quantum) depth 

blowup of the simulation is a constant 
factor.



Accuracy Threshold

Estimates of the numerical value of the quantum accuracy 
threshold  estimates have been based on three types of 

analysis.

Numerical simulation: Simulate a stochastic noise model and 
estimate the probability of gadget failure. Gives the most 

optimistic threshold estimates, but may not be fully trustworthy, 

and in any case can be applied only to simple noise models.

Rigorous proof: Prove that quantum computing is scalable for a 

class of noise models. Gives the most pessimistic threshold 

estimates, but trustworthy and applicable to noise models not 
easily amenable to simulation.

Hybrid methods: Analytic estimate based on assumptions that 
some effects can be safely neglected. Typically yields 

intermediate values for the accuracy threshold.



Noise models

In the local stochastic noise model, 
“fault paths” are assigned probabilities. 
For any set of r gates in the circuit, the 
probability that all r of the gates have 
faults is no larger than ε ε ε ε rrrr ....
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Two types of noise models are most commonly considered in rigorous 
estimates of the accuracy threshold.

The threshold theorem shows that fault-tolerance works for ε < ε0 . Though 
not fully realistic, these models provide a useful caricature of noise in actual 
devices, and can be compared with simulations.

In more realistic Hamiltonian noise models, fault paths can add coherently. 
The joint dynamics of the system and “bath” is determined by a Hamiltonian 

Data ×

Bath

time

× ×× ×
×

System Bath System BathH H H H −= + +

that acts locally on the system. Fault 
tolerance works if the system-bath 
coupling responsible for the noise is 
sufficiently weak. 



Accuracy Threshold
Some threshold estimates for stochastic 
noise:

Recursive: ε0  > 1.94 ä 10 −4 proven for local 
stochastic noise using “Bacon-Shor codes.
-- Aliferis, Cross

Topological: ε0  ∼ 7.5 ä 10 −3 estimated for 
independent depolarizing noise in a local two-

dimensional measurement-based scheme 

(combination of numerics and analytic argument).
-- Raussendorf, Harrington, Goyal

Teleported: ε0  > 6.7 ä 10 −4 proven for local 
stochastic noise using concatenated error-

detecting codes (ε0  > 1.25 ä 10 −3 for 
depolarizing noise); simulations indicate 

ε0  ∼ 1 ä 10 −2 for depolarizing noise. 
-- Knill; Aliferis, Preskill



Local coherent noise

Non-Markovian noise 
with a nonlocal bath. System Bath System BathH H H H −= + +

Quantum error correction works as long as the coupling of the system to the 
bath is local (only a few system qubits are jointly coupled to the bath) and 
weak (sum of terms, each with a small norm). Arbitrary (nonlocal) couplings 
among the bath degrees of freedom are allowed. 
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Threshold condition becomes:

(where t0 is the time to 

execute a gate). Really a 
condition on the error 
amplitude (probably overly 
pessimistic).



Bath

Local non-Markovian noise

Expressing the threshold condition in terms of the norm of the system-bath 
coupling has disadvantages --- The norm is not measured in experiments, 
and e.g., in the case of a bath of harmonic oscillators, the norm is infinite.
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It is more natural, and more broadly applicable, to express the threshold 
condition in terms of the correlation functions of the bath. 
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Such results can apply to an 
oscillator bath, and take into 
account the properties of the 
bath.



Gaussian noise model

In the Gaussian noise model, each system qubit couples to a bath of 
harmonic oscillators:
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If the state of the bath is Gaussian (e.g., thermal), the provable threshold 
condition can be expressed in terms of the two-point correlation function 
of the bath variables:

(x,t) is integrated over 

one circuit “location”, 

while (y,u) is integrated 

over all of spacetime.

Ng, Preskill 

computation

time

× ×

space This condition has sensitivity to high-
frequency noise that is probably 
spurious, but it is hard to do better 
without using specific properties of the 
system Hamiltonian (i.e., the qubits).

(x,t)
(y,u)



Some useful ideas

1) Gate teleportation and state distillation

2) Subsystem codes 

3) Topological codes 

4) Message passing in block decoding

5) Fault-tolerant gates for highly biased noise

6)  Protected devices and gates



Gate teleportation and state distillation

In fault-tolerant schemes, a version of 
quantum teleportation is used to 
complete a universal set of protected 
quantum gates. Suitable “quantum 
software” is prepared and verified 
offline, then measurements are 
performed that transform the incoming 
data to outgoing data, with a “twist” (an 
encoded operation) determined by the 
software. Reliable software is obtained from 

noisy software via a multi-round 
state distillation protocol. In each 
round (which uses CNOT gates and 
measurements), two noisy copies of 
the software are compared, and one 
copy is destroyed. The other copy, if 
accepted, is less noisy than the 

input.

Gottesman, Chuang; Knill; Bravyi, Kitaev

purified
“quantum
software”

Bell 
meas.
(and 
EC)

data in

data out

distillation
protocol

noisy in

less noisy out 
(if accepted)

noisy in

discard



Subsystem codes

Hilbert space 
decomposes as:
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A subsystem code is really the same thing as a standard quantum code, but 
where we don’t use some of the k qubits encoded in the code block. These 

unused qubits are called “gauge qubits” --- we don’t care about their quantum 
state and we don’t have to correct their errors.

Choosing not to correct the gauge qubits can be surprisingly useful. For one 
thing, we are free to measure the gauge qubits, and the measurement 
outcomes can provide useful information about the logical qubits that we really 
do want to protect.

For example, in the “Bacon-Shor code” it is easier to diagnose the errors by 
measuring the gauge qubits (measurements of weight-two Pauli operators) 
than by measuring the standard check operators of the code (measurements 
of weight-six Pauli operators).This method was used to prove the lower bound 

on the threshold  ε0  > 1.94 ä 10 −4 for a recursive scheme subject to local 

stochastic noise. -- Kribs, Laflamme, Poulin; Bacon; Aliferis, Cross



Local fault tolerance with 2D topological codes
Qubits are arranged on a two-dimensional lattice with holes in it. Protected 
qubits are encoded (in either of two complementary bases) by placing 
“electric” charges inside “primal” holes or “magnetic” charges inside “dual”
holes. The quantum information is well protected if the holes are large and 
far apart.
electric

(“primal”)
hole

magnetic
(“dual”)

hole

A controlled-NOT gate can be 
executed by “braiding the 
holes” which is achieved by a 
sequence of local gates or 
measurements.

The protected gates and error syndrome extraction can be done with local 
two-qubit gates or measurements. Numerical studies indicate an upper 
bound on the threshold for independent depolarizing noise: 

ε0  ∼ 7.5 ä 10 −3
Raussendorf, Harrington, Goyal

Dennis, Kitaev, Landahl, Preskill



Improved decoding via message passing

The simplest way to decode a concatenated code is “one level at a time”, 
starting at the lowest level. However, the decoding is more reliable if 
information about the error syndrome found at lower levels is used to infer 
the best way to decode at higher levels.

This observation is useful because gadgets for error-detecting codes are 
simpler than gadgets for error-correcting codes, and hence can tolerate 
stronger noise. These ideas were applied to prove a lower bound on the 
accuracy threshold for independent depolarizing noise:

ε0  > 1.25 ä 10 −3

(simulations indicate ε0  ∼ 1 ä 10 −2 ) 

level 0

level 1

level 2
message

In particular, “message passing”
allows a concatenated error-
detecting code to correct errors 
at higher levels, because an 
error-detecting code can correct 
errors that occur at known
positions in the code block.

Poulin; Knill; Aliferis, Preskill



Fault-tolerant quantum computing versus biased noise

In many physical implementations of quantum 
gates, Z noise (dephasing) is stronger than X

noise (relaxation). Dephasing arises from low 

frequency noise, while relaxation arises from 
noise with frequency ~w0 , which is typically much 
weaker.

|1〉

| 0〉

0ωℏ

Using only controlled-phase two-
qubit gates (which are diagonal in 
the computational basis), plus qubit
preparations and measurements, 
we can do universal fault-tolerant 
computation with good protection 
against dephasing. Shown is a 
circuit that uses these elements to 
achieve a controlled-NOT gate 
protected by a phase repetition 
code. When the noise is highly 
biased, the threshold improves by 
about a factor of 5.

-- Aliferis, Preskill; Brito, Aliferis, et al.



Protected superconducting qubit
A superconducting “current mirror” can be realized e.g. using a two-rung 
ladder of Josephson junctions shunted by capacitors that have much larger 
capacitance than the intrinsic capacitance of the JJs. 

1 2 3 4( ) + exp. smallE f ϕ ϕ ϕ ϕ= − + −

=

(The ladder conducts only excitons)

Connecting leads as shown, 

1 2(2( ))E f ϕ ϕ≈ −

Two nearly degenerate 

minima ö qubit.

The barrier is high enough to suppress bit flips, and the stable degeneracy 

suppresses phase errors. Protection arises because the encoding of quantum 

information is highly nonlocal. Degeneracy is split in an order of perturbation theory 

linear in length of ladder (compare topological protection).

Feigel’man, Ioffe

Kitaev



Protected superconducting qubit
Some gates are also protected: we can execute
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with exponential precision. This is achieved by coupling a qubit or a pair of   
qubits to a “superinductor” with large phase fluctuations: 

qubit
two

qubits

ϕ ϕ

The harmonic wave function of the superinductor evolves adiabatically to a 

“Gaussian grid state,’’ where the |0Ú and |1Ú grids differ by a displacement by p. The 

phase of |0Ú advances by 2p µ (integer)2 and the phase of |1Ú advances by 

2p µ (integer+ ½)2 . The relative phase is robust because states are also 

distinguishable grids in the conjugate (momentum) space.

Kitaev
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Some issues

1) Can we rigorously justify the “error phase randomization hypothesis”
(error probability linear in number of gates)? 

2) In Hamiltonian noise models, can we further reduce the sensitivity of 
threshold estimates to high-frequency noise, include non-Gaussian 
correlations, etc.?

3) Adapting fault-tolerance to properties of noise and specific algorithms.

4) What other schemes are scalable (besides concatenated codes and 
topological codes)?

5) Optimizing overhead cost.

6)   Incorporating spin echo, dynamical decoupling, etc. into analysis of 
fault-tolerant protocols. 

7)   Self-correcting systems and devices (“finite-temperature topological 
order” in fewer than four spatial dimensions).

8) Systems engineering challenges (wires, power, cooling, ..)



Operating a large-scale quantum computer will be a grand 
scientific and engineering achievement.

Judicious application of the principles of fault-tolerant quantum 
computing will be the key to making it happen.

Fascinating connections with statistical physics, quantum many-

body theory, device physics, and decoherence make the 
study of quantum fault tolerance highly rewarding.

Quantum fault tolerance


