Quantum Algorithms with Exponential Speedups

Leonard Schulman Caltech

Quantum computation

If you can maintain your computer in a very quiet environment, its state evolves under wave mechanics

Sometimes, we can design a computation so that the interference patterns reveal structure of a problem we want to solve

Example: hidden rotational symmetry

In: unif. superposition on H -periodic coloring of the group $\mathrm{G}=\mathbb{Z} / \mathrm{N}$ (for $\mathrm{N} \sim \exp (\mathrm{n})$). Here $\mathrm{N}=24, \mathrm{H}=3$.

Out: unif.-norms superposition on the subgroup of G perp. to the period (here $\mathbb{Z} / 8$). Sample, repeat, post-process to get H .

Design goal in quantum algorithms: create huge constructive interference

What kind of problems allow such constructive interference?

Need to create resonance

Bennett, Bernstein, Brassard, Vazirani '94: Quantum search among 2^{n} items requires time $\geq 2^{\mathrm{n} / 2}$.
I.e. (relative to an oracle), no subexponential-time algorithm for NP.

Quantum computers, like classical ones, can quickly solve only structured problems.

Exponential speedup quantum algorithms

ABELIAN HIDDEN SUBGROUP PROBLEM

 (+ closely related)further abelian gps; cracks elliptic curve cryptosystem

cont. example: hidden rotational symmetry

For binary functions, Simon/Shor insufficient; use also Hales Hallgren '00.

Exponential speedup quantum algorithms

ABELIAN HIDDEN SUBGROUP PROBLEM (+ closely related)

Brassard Hoyer 97. Mosca, Ekert '99
further abelian gps; cracks elliptic curve cryptosystem

Boneh Lipton '95: Abelian HSP

> Kitaev'95: Abelian Stabilizer Simon '94; Shor' 94 : Abelian HSP
discrete log,
factoring; cracks
RSA cryptosystem

What about reflection symmetry? Dihedral group: nonabelian

Instead of the dual group \hat{G}, now use the nonabelian Fourier transform (decomposition of the group algebra into irreducible subspaces).
Ettinger Høyer '00: polynomially-many samples suffice. But no algorithm.

Exponential speedup quantum algorithms: beyond abelian HSP

NONABELIAN HIDDEN SUBGROUP PROBLEM (+ closely related)

 nselme Santha '07: extraspecial p-groups (incl. HeisenbergAlagic Moore Russell 27: Kuperberg sieve in G^{n} (certain small G)
Bacon Childs van Dam '05: PGM for Heisenberg gp... uses Gröbner Moore Rockmore Russell Schulman'04: affine gps. Strong sampling Kuperberg 03: dihedral group
Friedl Ivanyos Magniez Santha Sen 03: hidden shift in (Z/p) ${ }^{\mathrm{n}}$, const. p Watrous '01: order of a solvable gp
Grigni Schulman Vazirani Vazirani '01: almost-abelian gps; Gavinsky '04
Hallgren Russell Ta-Shma '00: normal subgps
Rötteler Beth 98 : wreath products $\left.(\mathbb{Z} / 2)^{\mathrm{n}}\right\}(\mathbb{Z} / 2)$

Applications of the nonabelian HSP and related problems

1. Symmetric group:

Graph Automorphism \leq_{Cl} Symmetric Group HSP
2. Symmetric Group HSP \leq_{Cl} Code Equivalence (McEliece '78,

Petrank Roth '97)
3. Dihedral group: Regev '02:
$\mathrm{n}^{1.5}$-uSVP \leq_{Qu} Dihedral HSP (single-register coset sampling)
$\leq_{\text {Qu }}$ Avg-case Subset Sum
Regev '04: for some constant c ,
n^{c}-uSVP \leq_{Cl} Dihedral HSP (same sampling)
uSVP is an important problem: Ajtai ‘96, Ajtai Dwork '96,
Regev '04: public-key cryptosystem based on worst-case hardness of $\mathrm{n}^{1.5}$-uSVP. Note, $\mathrm{n}^{0.5}$-uSVP is NP-hard.

Limits to quantum algorithms for the HSP in S_{n}

Hallgren Russell Ta-Shma '00: weak sampling fails
Grigni Schulman Vazirani Vazirani '01: random bases fail
Moore Russell Schulman '05: single-register algs fail
Hallgren Moore Roetteler Russell Sen '06: o(log n)-registers algs fail
Moore Russell Sniady '07: Kuperberg's sieve fails

Obstacle to Kuperberg sieve for S_{n} : new representation theory inequality

Key is following inequality (Rattan Sniady '06): $\forall \mathrm{D}>0 \exists$ constant c such such that:

Let λ be an irrep of S_{n} whose Young Tableau has at most $\mathrm{Dn}^{1 / 2}$ rows and and columns. Let $t(\pi)$ be the number of transpositions required to to generate permutation π.

Then
$\left|\chi_{\lambda}(\pi) / d_{\lambda}\right| \leq\left(\left(\mathrm{c} \max \left\{1, \mathrm{t}(\pi)^{2} / \mathrm{n}\right\}\right) / \mathrm{n}^{1 / 2}\right)^{\mathrm{t}(\pi)}$.
(Here d_{λ} is the dimension, and χ_{λ} is the character, of irrep λ).
In Moore Russell Sniady ' 07 this ensures an upper bound on the variation variation distance between the statistics of the output of the algorithm algorithm when the hidden subgroup is trivial, and when it is nontrivial. nontrivial.

Other exponential speedup quantum algorithms

Childs Cleve Deotto Farhi Gutmann Spielman '03: "quantum walk"
(but the most compelling walk alg is for polynomial improvement, Farhi Goldstone Gutmann' 0 07, Ambainis Childs Reichardt
Spalek Zhang © 07)

Kedlaya 06: count pts on a genus g curve over GE(q) in time poly(g, $\log q$)

Childs Schulman Vazirani '07: nonlinear "hidden structure" problems (level sets of polynomials, sphere radius) in abelian groups

Freedman Kitaev Wang '02
Aharonoy Jones Landau '06: additively approximate
Jones polynomial at roots of 1 .
Aharonov Arad Eban Landau '07:
additively approximate
Tutte poly of planar graph

"Optically" driven algorithm design: find the centers of (a flat of) spheres

The plane here represents the finite geometry (GF / q) ${ }^{\mathrm{d}}$. Start w. wave on the "external" (meaningless for GF(q)) sphere

Can show:
Prob. of landing at center is at least 1/polylog(q)

We find exponential speedup
quantum
algorithms
in group
algebras, not
just any
Hilbert space

Some potential targets

New algorithms for HSP in S_{n}. How to use highly entangled measurements?
"Post-quantum crypto:" try to rely on problems we really think aren't in BQP, e.g., HSP in S_{n}. New key exchange protocol to replace Diffie Hellman?
Improve dihedral alg; crack cryptosystems based on SVP.
Improve Gröbner basis, ideal membership computation. (Note:
ideal membership is EXPSPACE-complete: Mayr Meyer ${ }^{\text {' } 82)}$
$\{$ linear algebra, univariate gcd $\} \leq$ Gröbner \leq Knuth-Bendix
Many physical quantum systems are only "slightly quantum":
e.g., low-entanglement 1D or 2D systems. (Motivates MPS,

PEPS methods.) Simulate such quantum systems with
quantum resources proportional only to this measure.

Further reading

Childs, van Dam '08:
Quantum algorithms
for algebraic problems
arXiv:0812.0380

Image credits

South Island, New Zealand: Brewbooks 2006. (Flickr; Creative Commons license)

Great Wave off Kanagawa: Katsushika Hokusai, c. 1831
Lunar laser ranging: McDonald Observatory
Tower of Babel: Pieter Bruegel the Elder, c. 1563 (WebMuseum)
Lenticularlee wave clouds: Roberta Johnson. Courtesy of Windows to the Universe, http://www windows ucar.edu
Relvin-Helmholv clouds: Teriy RobinsonUCAR. Courtesy of Windows to the Universe, htp: //www.windows.ucar.edu
The Ancient Library of Alexandria: Wikimedia Commons,
Electron cloud of a Silicon atom in GaA: M.C.M van der Wielen, A. A van Roij, and H. van Kempen, University of Nijmegen, http://qt.tn.tudelft.nl/publi/1998/stt/stt htm

